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imation and without the large numbers of adjust-
able parameters, may furnish a more satisfactory
(and satisfying) approach.

Since this method allows for inclusion of specif-
ic interactions then data analysis using the tech-
nique might furnish a better understanding of the
basic physical mechanisms operating in a metal.
Attempts in this direction have recently been made
for zinc'® and beryllium,*® *! with promising re-
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sults.
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An analysis is presented that permits a direct determination from electron-spin resonance
(ESR) data of crystal-field splitting energies and also identifies which Kramers’s doublet lies

lowest for axially symmetric O~ defect centers.

The analysis is such as to make it unneces-

sary to solve the secular equation for both the crystal-field and spin-orbit interaction.

Electron-spin-resonance (ESR) absorption mea-
surements made at 4.2 °K on alkali halide crystals
subjected to electrolytic coloration followed by uv
photolysis have demonstrated the existence of new
paramagnetic centers. These centers have axial
symmetry and are believed to be O ions that sub-
stitute for halide ions."'? The first theoretical
analysis undertaken on the spectral parameters of
this system is that due to Vannotti et al.?® We
would like to draw attention to two aspects of their
analysis: (i) The energy of the | P,) level given
in Ref. 3 for the case of an orthorhombic crystal
field [Eq. (5)] is not an exact root of the corres-
ponding secular equation, a point which we shall
discuss; (ii) it is difficult to establish the | P) en-
ergy-level sequence. In order to obtain this se-
quence, results due to Schoemaker and Boesman*
were used.

In this paper, a mathematical procedure is de-
veloped which provides for exact solution to the

crystal-field splitting energies of the aforemen-
tioned problem for ESR data, without any a priori
assumption in regard to which Kramers’s doublet
lies lowest.

Under the combined action of an orthorhombic
crystal field

Re=E[L-5L(L+1)]+(8/2)(L:-L2) 1)
and the spin-orbit interaction

%,s=ALS. 2
The energies of the three Kramers’s doublets re-
sulting from the 2p°-2P term of the free O ion are
given by
W3- GE*+5 024300 W

+HE}-FEA+ =0, (8)

and the corresponding eigenvectors take the form®
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TABLE I. Spin-Hamiltonian parameters and crystal-field splittings of O™ centers in some alkali halides.
Crystal e A C, C, \E NW 1
Nal 1.9769 2.2931 +0.9936 +0.07950 -0.176 +0.259 1.002
KCl1 1.981 2.258 +0,9947 +0.07237 -0.160 +0.236 0.955
KBr 1,987 2.226 +0.9962 +0.06182 -0.133 +0.198 0.970
KI 1.9733 2.3023 +0,9927 +0.08503 -0.191 +0.278 0.974
RbI 1.9733 2.2888 +0.9927 +0.08503 -0.191 +0.278 0.933
8 8 3_
| Py =C,| PE)+Co| PEY+Cy| PEY, Kz%_l_, EI;S__F__ZK’ oS
@) A 3(F-1) 3 A B
8 8
| PPy =C, | P&y —C,| PEZY+Cy | PEY . (7

{In regards to the results of Ref. 3, one can check
that the value W=E [1 - (a%/2E?)] is not a root of
Eq. (3).}

In the case of an axially symmetric crystal field,
A=0and C,=C;. Using the eigenvectors given in
Eq. (4), the following expressions may be obtained
for the g-tensor components by applying the Zeeman
operator ®,= u H(L +g,S ):

gu= ‘ gecf _2C§(ge - 2) ‘ ’

(5)
81= lgecf+4lclca ' ’
where C%+2C2=1, and
(P | L, | Pyy=%(P.| L,| P)y=1. (6)

The parameter [ gives the matrix elements of the
L, operator whose deviation from unity is to be as-
sociated with fact that the corresponding one-elec-
tron wave functions are not pure p orbitals. To
avoid needless complications, we have considered
X and [ to be isotropic.

In the case of an axially symmetric crystalline
field, the following useful relations may be obtained
from the relations between the parameters C; with-
out actually solving the secular equation:

These relations permit a ready determination of
the ratios A/E and /W from ESR data (see Table
I). Furthermore, with these ratios, as well as
with the assumption that the sign of A is negative’~®
it becomes possible to determine which of the three
Kramers’s doublets lies lowest. The experimental
data suggest that the | P,) doublet is the lowest-
lying level for all of the hosts given in Table I,
while the small difference between our values of
)/E and those given in Ref. 2 can be interpreted

as being due to the influence of spin-orbit interac-
tion on the | P,) level. (The formula W,=E used
in Ref. 2 did not take into consideration this in-
fluence. )

It should also be mentioned that for 7#1 the afore-
mentioned theory must be considered as a less than
desirable approximation. In such a case, a more
appropriate approximation would consist of the use
of wave functions that are eigenvectors of 3C,yom + 3Cqs
of the central atom and ligands, both modified by
an unisotropic spin-orbit interaction. Even in this
case, the over-all form of g-factor formula (5)
would remain the same, with X and E being con-
sidered as effective parameters in a manner sim-
ilar to that done by Zeller and Kinzig® for O,
centers.
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